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ARTICLE INFO ABSTRACT
Keywords: In this study, a novel neural network model is designed to predict the low-cycle fatigue (LCF) life
Low-cycle fatigue under thermal-mechanical loading. The model is composed of three sub-networks: (1) a Con-

Life prediction

Convolutional neural network
Transformer

Deep learning

volutional Neural Network (CNN), (2) a Transformer, and (3) a Fully Connected Neural Network
(FCNN). These three sub-networks function as the Backbone, Neck, and Head of the model,
respectively. The model, named ConTrans (an abbreviation for Convolutional Neural Network-
Transformer), utilizes binarized hysteresis images as input. The predictive capability of the
ConTrans model for LCF life has been validated using experimental data from four different
materials. The results demonstrate that almost all predictions fall within the 2-factor band,
confirming the model’s accuracy and effectiveness.

1. Introduction

In practical engineering, mechanical components are usually subjected to repeated thermal-mechanical loading, which leads to
fatigue deformation, particularly low-cycle fatigue (LCF). This can cause premature failure of components under loading at different
temperatures. Establishing an effective LCF life prediction model is a vital technology to ensure the safe operation of key products and
major facilities, which is of great strategic significance for the aerospace industry, transportation, and nuclear power plants, among
other fields. The Coffin-Manson [1] relationship, commonly utilized in fatigue life prediction, described the association between
plastic strain amplitude and LCF life. The energy-based fatigue life model [2-5] has the capability to integrate stress—strain and
hysteresis loops for the determination of fatigue damage and the prediction of fatigue life. Lee et al. [6] developed a novel life pre-
diction model using an energy-based fatigue damage parameter, the non-dimensional plastic strain energy density (PSED). Zhu et al.
[7] introduced a novel energy equivalent damage parameter (EDP), which leverages uniaxial fatigue data for purpose of predicting
fatigue life under multiaxial fatigue loading conditions. Gan et al. [8] proposed a new energy-based model to assess LCF life by using
the plastic strain energy principle and the critical surface approach. Mandegarian et al. [9] established a fatigue failure criterion based
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on normalized energy, which computed the strain energy using off-axis stress and strain components. Gao et al. [10] substituted the
maximum normal stress in the original Smith-Watson-Topper (SWT) model with the equivalent stress amplitude and then reinterpreted
the SWT parameters as the equivalent strain energy density (ESED). Therefore, a half-life hysteresis loop is usually utilized in the
fatigue life study as it contains stress—strain as well as energy information and is critical in life prediction. These models, however, are
all based on physical knowledge and require prior in-depth study on the mechanical properties of the materials, while relying on a
large amount of experimental data. In contrast, machine learning approaches can utilize existing data to automatically learn and
extract the key factors affecting LCF life, leading to more general and accurate predictions.

Machine learning (ML) models have been widely used as a fatigue life prediction method, characterized by a good balance between
computational efficiency and prediction accuracy. In the LCF domain, Xu et al. [11] integrated three characteristics of the Nickel-based
superalloys and proposed four ML models to predict LCF life, and evaluated them by R? value. Duan et al. [12] developed ML models
with crack extension rate, residual stress, and average strain as the inputs to predict the LCF life of 316 austenitic stainless steel. Long
et al. [13] employed five ML models to predict LCF life of lead-free solders by considering loading, composition, and geometry factors.

Contrary to the above ML techniques, an advanced approach known as deep learning boasts a more robust representational
capability [14]. Notably, the neural network is the most extensively utilized tool within this method. For example, Zhang et al. [15]
formulated a method based on deep learning that enables the concurrent prediction of material fatigue life under creep, fatigue, and
creep-fatigue loading conditions. Yang et al. [16] used a long short-term memory network (LSTM) to eliminate the traditional
multiaxial fatigue life prediction model limitation of material and loading conditions. Sun et al. [17] utilized the generative adversarial
network (GAN) model for the enhancement of multi-axis fatigue data, which resulted in a significant performance improvement of
several machine learning models. For the prediction of gear contact fatigue life, Zhou et al. [18] proposed a hybrid physically-based
and data-driven approach and a deep belief network model was developed to show the relationship between various parameters and
fatigue life. Halamka et al. [19] proposed a novel hybrid physically-informed neural network in which the LSTM/GRU unit was
combined with the fully-connected layer for extracting the damage parameters of the loading cycle.

Convolutional neural networks (CNN) and attention mechanisms are infrequently employed in the study of fatigue life. Kamiyama
et al. [20] applied CNN to predict fatigue crack development with satisfactory results. Heng et al. [21] used CNN to extract features
from the loading sequence and the LSTM captured the time series features from the output of CNN. Lastly, a fully connected layer was
utilized for dimensional transformation. Sun et al. [22] proposed CNN models for hysteresis loop image recognition to predict
multiaxial LCF life. However, this method encountered difficulties when handling complex loading conditions, such as thermal-
—mechanical loading. Regarding attention mechanisms, Yang et al. [23] used them to directly simulate a highly nonlinear mapping
between multiaxial fatigue life complex loading conditions. Despite the popularity of the attention mechanism-based Transformer [24]
in recent years, it has not been applied in the fatigue life prediction domain. In many conventional models, LCF life of a specific
material is determined by several factors, such as the loading conditions, ambient conditions (like temperature), and material pa-
rameters, etc. Most of the deep learning approaches mentioned above are based on these factors, which are limited by the data
obtainment and model training.

In this study, without requiring loading conditions and other factors of the material as additional inputs, a novel neural network
model named ConTrans is developed to predict the LCF life from a more general input-the half-life hysteresis loop image. The model’s
accuracy is tested using experimental data from four materials subjected to thermal-mechanical loading. The proposed neural network
model consists of three sub-networks: CNN, Transformer, and Full Connected Neural Network (FCNN), which act as the Backbone,
Neck, and Head of the model respectively. The paper is organized as follows: (1) The detailed algorithm of the established model is
introduced; (2) The framework and the determination of the model parameters are demonstrated in Section 3; (3) In Section 4, the
model performance is evaluated and discussed; (4) The conclusion and outlook are presented in Section 5 and 6, respectively.

2. Algorithms

CNN [25] has gained significant traction in the field of Computer Vision (CV), owing to its superior capabilities in processing image
information. On the other hand, the Transformer model [24], which serves as the cornerstone of the Generative Pre-trained Trans-
former (GPT) [26], has demonstrated exceptional performance in the field of Natural Language Processing (NLP).

In this study, a novel neural network model, named as ConTrans (Convolutional Neural Network-Transformer), is established that
amalgamates the strengths of CNNs in local information processing and Transformers in global information processing. This fusion
enables the model to establish a complex mapping relationship between hysteresis loop images and LCF life.

As depicted in Fig. 1, the ConTrans model comprises three key components: the Backbone (CNN), the Neck (Transformer), and the
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g. 1. The architecture diagram of ConTrans.
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Head (FCNN). The Backbone is designed to receive hysteresis loop images, which are then fed into the Neck in a unified tensor format.
The Neck processes this information and passes it to the Head, which ultimately predicts the fatigue life. This innovative approach
leverages the best of both worlds, promising enhanced performance in fatigue life prediction.

Based on the above analysis, ConTrans model is established in this study, including three important elements: (1) a CNN as
Backbone, (2) a Transformer as Neck, and (3) a FCNN as Head. These three elements will be introduced in the following subsections,
respectively.

2.1. Backbone: Convolutional neural network

A typical convolutional neural network is illustrated in Fig. 2, which is established with input layer, basic unit: ‘convolutional —
activation- pooling’, and dense layer:

(1) Input layer: This layer receives the original image data, and each image can be represented as a three-dimensional matrix:
(Channels, Height, Width), in which, Channels present the color channels of the image (red, green, blue). The grayscale image
is composed of only black and white color, whose channel is 1.

(2) Convolutional layer: This layer convolves the input image with a convolutional kernel to extract features from the image.

(3) Activation layer: This layer introduces nonlinearity to the output of the convolutional layer by applying an activation function,
which enables the network to learn complex features [27] and can be expressed as follows:

Y = f(X*W +b) @

In which, f is the activation function (such as Rectified Linear Unit(ReLU) [28], Sigmoid). X is the input. W is the Filter or Kernel. b is the
bias, and x is convolution operation.

(4) Pooling layer: This reduces the size of the feature maps output by the convolutional layer, thus reduceing the amount of
computation and the number of parameters and preventing overfitting, and can be expressed as follows:

Z=g(Y\ls) (2)

In which, Z is the output of pooling layer. g is the aggregation function. Y is the output of the convolutional layer. | is the sampling
operation and s is the window size. The global average pooling (GAP) layer, as referenced in [29], operates by averaging the entire
feature map from the preceding layer to generate a single feature point. These feature points are then aggregated to construct the final
feature vector.

(5) Dense Layer: This layer synthesizes and classifies the features extracted from the previous layers and outputs the final prediction
results.

O=h(Z-W+Db) 3

In which, O is the output of fully connected layer. h is the activation function. Z is the output of the previous layer. W is the weighting

matrix. b is the bias, and - is matrix multiplication.
In this model, the CNN serves as Backbone, responsible for receiving images and learning their features.

2.2. Neck: Transformer

A Transformer model can be represented by Fig. 3, and generally consists of several vital components, which are introduced
separately in the following as exemplified by the NLP task.
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Fig. 2. Diagram of a typical Convolution Neural Network.
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2.2.1. Positional encoding

In NLP tasks, words are fed into the Transformer model with the addition of a Positional Encoding (PE). This is because a
Transformer model, unlike the structure of RNN, does not directly utilize the sequential information of the words, instead utilizing
global information. The role of positional encoding is to maintain the relative and solute position of the word in the sequence. The
dimensions of the positional encoding and the word are identical, which allows for their direct summation.

In the original work of Transformer [24], the PE matrix is calculated as:

PE(pos, 2i) = sin (m) )
100004modet
PE(pos,2i+ 1) = cos (%) 5)
10000model
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Fig. 4. Illustrations of Attention mechanism: (a) Self-Attention mechanism, (b) Multi-Head Attention mechanism.
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where pos is the position of the word in the sentence. d is the dimension of the PE. 2i is the even dimension and 2i+1 is the odd
dimension. By adding the above PE with the word vectors, the input X to the Transformer is obtained.

2.2.2. Self-attention mechanism and multi-head attention mechanism
The architecture of Self-Attention [30] is illustrated in Fig. 4(a). For a better understanding, imagine a translation task where the
input is a sentence with four words. Each row represents a word, and every word can be determined by a 1 by 6 vector. Three linear
transformation matrices are employed in the computation: Wo, Wk, Wy ,which are randomly initialized at the beginning of training.
Initially, the input X is subjected to multiplication with the three matrices as follows:

Q=X-Wq (6)
K=X-Wg @]
V=X Wy ®)

in which Q, K, V are Query, Key, and Value matrices, respectively. Notice that each row of X, Q, K, V represents a word.
Then, the matrix obtained by multiplying Q by the transpose of K is 4 by 4, which represents the relationship between every word.
Subsequently, the output of the self-attention mechanism can be derived from Q, K and V, which are calculated as follows:

QK"
Z softma.x( N > % (©)]

where softmax is an activation function that normalizes numerical vectors into probability distribution vectors with probabilities
that sum to 1, which means correlation coefficients between words. K” is the transpose matrix of K and dx is the number of columns of
K. Z is the output of self-attention, which represents the relation matrix of the input sentence.

Multi-Head Attention [24] is illustrated in Fig. 4(b), in which multiple parallel self-attentions are employed to extract different
attention heads of input sentences simultaneously. Feed input X into each of the h different self-attentions, and one can get h Z; ,
(i=1,2...h). The output Z of the multi-head attention is the concatenation of the h Z; after processed by a linear layer. Multi-Head
Attention allows for joint attention to information from different representation subspaces at different locations, which is essential
in complex tasks.

Masked-Multi-Head-Attention [24] is a special attention mechanism. It allows the model to focus only on the previous position and
ignore the subsequent positions when generating each position of the output sequence. That prevents the model from seeing future
information and ensures the correctness and consistency of the output sequence.

2.2.3. Feed forward and add & norm
Feed Forward is a two-layer Full Connected Layer, the activation function of the first layer is ReLU, and the second layer does not
have an activation function, and the corresponding formula is as follows:

max(O,XWl +b1)W2 + b, (10)

In which, X is the input of Feed Forward. W;, W, are weighting matrices and b;, b, are bias.

The purpose of the Feed Forward is to introduce non-linearity and allow the model to learn complex relationships between features,
which are essential for tasks like language translation, text generation, and more.

Add is (X + Multi — HeadAttention(X) ) or (X + FeedForward(X) ), which is a type of residual connection that is usually applied in
deep networks [31] to improve their performance. Add layer is illustrated in Fig. 5.

Norm is Layer Normalization [32], which speeds up convergence by converting the inputs of each layer of neurons to have the same
variance. The Add & Norm Layer is calculated as follows:

LayerNorm(X + Multi — HeadAttention(X) ) (1D
LayerNorm(X + FeedForward(X) ) (12)

The purpose of the Add & Norm layer is to stabilize training and improve gradient flow during backpropagation.

2.2.4. The process of transformer
The Transformer [24] model, as illustrated in Fig. 3, utilizes an encoder-decoder architecture, where the encoder transforms the
input sequence into a continuous expression, and the decoder generates an output sequence based on that expression. Taking the NLP

F(X)+X

0 @)

Fig. 5. Add Layer.
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task as an example, the basic process of the Transformer is described as follows:

Firstly, each word of the input sequence is converted into a vector, which is obtained by summing the word embedding and the
position’s embedding. That preserves the semantic and sequential information of the words.

Then, these vectors are fed into an encoder, which consists of multiple identical layers, each containing a multi-head attention
mechanism, residual connection, and feedforward neural network. The Multi-Head Attention mechanism calculates the correlation of
each position in the input sequence with other positions and weights the input sequence according to these correlations. The Feed
Forward performs a nonlinear transformation of the input sequence to improve the expressiveness of the model. Finally, the encoded
information is obtained.

After that, the output of the encoder is fed into the decoder, the structure of the decoder is basically similar to that of the encoder,
but the decoder has one more Masked Multi-Head Attention, which is mentioned in Section 2.2.3. Again, after the Multi-Head
Attention mechanism, residual connections, and Feed Forward, the decoded information is obtained. This study is a regression pre-
diction task, so it does not need Masked Multi-Head Attention. Only Transformer Encoder module is employed in this model.

Eventually, the output of the decoder passes through a linear layer and a softmax layer, obtaining the word probability at each
position, and then selects the output word according to a certain strategy.

In the work, Transformer Encoder module is employed as Neck in this model for further fusion of features.

2.3. Head: Full connected neural network

FCNN, as illustrated in Fig. 6, is one of the most basic artificial neural network structures, also known as Multilayer Perceptron
(MLP) [33,34].

In this work, FCNN is employed as the Head of the ConTrans model. The choice of FCNN as the Head of the model is primarily due to
its ability to learn complex features of the input data. By connecting each neuron to all neurons in the previous and subsequent layers,
the FCNN forms a densely connected structure that enables the network to learn and represent high-level features of the input data. In
addition, FCNN is highly flexible and can be easily scaled to larger network structures, to handle more complex tasks. It is therefore
suitable as a Head for various types of models.

3. Framework of the model
3.1. Diagram of ConTrans model
The comprehensive diagram of the ConTrans model is depicted in Fig. 7.
Initially, the binarized hysteresis loop image, represented as a single channel, is input into the CNN, the backbone of ConTrans. This

image traverses through N basic units of CNN. As introduced in section 2.1, the features of the image are preliminarily learned through
these network layers. It is mentioned that the final layer is the global average pooling layer. The global pooling layer ensures that a
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Fig. 6. Illustration of FCNN.
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Fig. 7. The whole detailed diagram of ConTrans model: Input, Backbone, Neck, Head, Output.

feature tensor of uniform size is obtained, regardless of the initial image size, which is critical for the following feature learning. After
CNN processing, the image data is transformed into a tensor that is utilized for further feature extraction in the subsequent neck
network.

Following this, the image feature tensor, along with Positional Encoding, is fed into the Transformer Encoder module. As intro-
duced in section 2.2, this module further integrates the global features using the Multi-Head Attention mechanism, Residual con-
nections, and Feed-forward operations. The Multi-Head Attention mechanism calculates the correlation of each position with other
positions in the input tensor processed by CNN. The Residual connections help to improve the learning performance. The Feed Forward
layer introduces the non-linearity of the learned feature. In conclusion, the neck network of ConTrans model enhances the model’s
ability to capture complex patterns and dependencies in the data.

Finally, the feature tensor is input into the FCNN to predict the fatigue life. As introduced in section 2.3, this final step transforms
the high-level features extracted and processed by the previous layers into a specific prediction, providing a direct, data-driven es-
timate of the LCF life.

This process, from initial input to final prediction, illustrates the seamless integration of different neural network architectures in
the ConTrans model, each contributing to the accurate prediction of LCF life. The model’s design ensures that it can handle varying
image sizes, extract, and process complex features, and make accurate predictions, all while minimizing the need for human inter-
vention. This makes ConTrans a robust and versatile tool for predicting LCF life from half-life hysteresis loop images.
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3.2. Data pre-processing

The hysteresis loops contain information on stress-strain and energy, which are usually utilized to predict fatigue life, such as the
classical Ramberg-Osgood [35] relationship. Hysteresis loops can be easily obtained from stress-strain curves without complex
mathematical processing. In this study, the half-life hysteresis loops are converted into image data, which are then used as input for the
ConTrans model. This is because there is a stabilization period existing within the fatigue cycle, and the half-life hysteresis loops fall
within this stabilization period. In this work, the hysteresis image is a binary image with only one-color channel and two possible
values: black or white. The image size depends on the maximum stress and strain values in the experiment, so it can change for
different cases.

To explain how the hysteresis image is processed, two examples of MarBN steel with different strain amplitudes (0.4 % and 1.0 %)
at 430 °C, as displayed in Fig. 8. First, plot the hysteresis loop with strain on the x-axis and stress on the y-axis, as displayed in Fig. 8(a).

The area enclosed by the hysteresis loop is the strain energy. In consideration of the effectivity and reliability of the strain energy
criterion [36,37], to emphasize the enclosed area of the hysteresis loop, a binary method is employed to process the hysteresis loop
images [22]. The binary method is performed as follows:

_J0 (xy)eQ
R 42

In which,(x, y) is the location of pixels. Q is the boundary and interior region of the hysteresis loop. P(x, y) is the pixel value at (x,y).
Thus, the pixels in region Q set to 0, and which are black in the image. The pixels outside of the region Q are set to 1, and which are
white in the image. The hysteresis loops with 0.4 % and 1.0 % strain amplitude correspond to Fig. 8(b) and Fig. 8(c), respectively.

Image data quality depends on two main factors: scale and resolution. These two factors influence the amount of information in the
image and the performance of the model [22]. The image scales of all samples are normalized to 0.1 % per inch in the stress direction
and 100 MPa per inch in the strain direction. In this way, the number of pixels in the height and width directions of the hysteresis image
are calculated as follows:

He max(stress) x P 14)
2 X SSEFESS
_ max(strain) x P

2 x Sstrain (1 5)

In which, H and W are the pixel number in the height and width direction, respectively. max(stress) and max(strain) are the maximum
value of the stress and strain, respectively. Sgress and Sgrain are the scale of stress and strain directions, which are set as 100 Mpa/inch
and 0.1 %/inch, respectively. P is the image resolution.

Since convolutional neural networks are characterized by translation invariance, data augmentation of image data is a common
means of processing data for image tasks in computer vision. In this study, data augmentation is employed to enhance the model
performance. Additionally, the data values for fatigue life, which span a wide range and vary significantly in order of magnitude,
require normalization prior to training. This normalization allows the model to converge more rapidly to an optimal solution [38]. For
fatigue life Ny, scaling it using the logarithmic transformation logN¢, has proven to be effective.

3.3. Hyperparameters

Prior to training the ConTrans model, it’s necessary to adjust the hyperparameters that shape the model architecture, such as the
number of basic units of CNN and the dimensions of the fully connected layers. These adjustments are made in accordance with the
complexity of the practical case. Theoretically, the model’s ability to model nonlinear mapping relationships improves with higher
dimensionality and deeper layers. The hyperparameters involved in ConTrans are listed in Table 1.

For Item (1), the resolution P refers to the resolution of hysteresis loop image. If the resolution is too small, one pixel may

Table 1

Lists of hyperparameters.
Item Symbol
(1) Resolution of the hysteresis image P
(2) Dimensions of out-channels in CNN d.
(3) Size of kernel Sk
(4) Size of pooling-kernel Sp
(5) Size of global pooling-kernel Sg
(6) Number of basic units of CNN num,
(7) Number of attention heads h
(8) Number of Transformer Encoder layer num,
(9) Dimension of input for Transformer dm
(10) Dimensions of full connected layers ds
(11) Number of hidden layers numg
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encompass a large range of data, leading to the distortion of the hysteresis loop. As the resolution increases, the images become
smoother, and the shape becomes clearer. However, higher resolution incurs greater computational cost, necessitating a balance. In
this work, the resolution is set as 50 pixels per inch (ppi).

Items (2) to (6) determine the complexity of the CNN (Backbone), which serves as the primary control hyperparameter. Items (7) to
(9) and Items (10), (11) determine the Neck and Head of ConTrans, respectively. In theory, higher values of these hyperparameters
make the model better at dealing with the nonlinear problem. But with that, the training process becomes more challenging and time-
consuming.

3.4. Determination of model parameters

3.4.1. Model initialization

In contrast to hyperparameters, model parameters are derived from the learning process. These parameters, which require training
(for instance, the linear transformation matrix), must be initialized. This study employs Xavier initialization [39], designed to maintain
the variance of each layer’s output close to that of its input. This approach helps to circumvent issues such as exploding or vanishing
gradients. During the training phase, these values are continually updated via the backward propagation method to minimize the loss
function, which is the discrepancy between the predicted fatigue life and the actual value.

3.4.2. Loss function

From trying a few of mainstream loss functions (such as mean absolute error, mean square error, and mean absolute relative error),
it is found that the loss function that blended L; Loss and L, Loss is the most efficient and can avoid vanishing gradient problems, and
the Loss Function can be expressed as the following equation,

1< ~
leﬁz‘}’i*)’i‘ (16)
P
1< ~
Ly :HZ()’i*yi)z a7
i=1
Loss function = w; - L1 + @y - Ly (18)

where y; is the true value of the i th sample, y; is the predicted value of the i th sample, and n is the total number of samples. eand w, are
the weights of L; Loss and L, Loss, respectively, which are set at 0.8 and 0.2 before training in the study.

3.4.3. Optimizer

The RAdam optimizer [40] equipped with a dynamic learning rate and weight decay, is utilized to enhance the learning process.
Learning rate decay [41,42] is an optimization strategy that dynamically modifies the learning rate based on the progression of
training. The objective of learning rate decay is to employ a larger learning rate during the initial stages of training to expedite
convergence, and a smaller learning rate in the later stages to enhance the model’s accuracy and stability. In this study, the initial and
minimum learning rates are setat 1 x 10~* and 5 x 1078, respectively, with a decay factor of 0.5. It is found that weight decay [41], a
regularization technique, is particularly effective in preventing overfitting for prediction tasks in this study. RAdam, an optimization
algorithm based on Adaptive Moment Estimation (Adam) [43], dynamically adjusts the learning rate throughout the training process.
Unlike Adam, RAdam introduces a variable correction factor to counteract the variance bias in Adam, allowing the learning rate to
reflect the gradient’s signal-to-noise ratio more accurately.

3.4.4. Activation function

Activation functions are crucial for neural networks to model complex nonlinear phenomena and learn efficiently. The choice of
activation function depends on the research task. Generally, it is recommended to utilize a sigmoid and tanh function in classification
task, and a ReLU function [28] (i.e., ReLU(x) =max(0,x)) is a more universal choice. However, in this work, it is found that LeakyReLU
function [44] has better performance than the ReLU function. And the LeakyReLU function is adopted as activation function of
Backbone (CNN) and Head (FCNN). The detailed methodology of LeakyReLU function is as follows:

>0
fo={ 5 Phacon (19)

in which, 1 is slope parameter and set as 0.01 in this work. For the history dependent problem, the Gaussian error linear unit (GELU)
[45] may be the most effective. In this study, the GELU is adopted in Neck (Transformer):

GELU(x) = 0.5x(1 + % /0 el ) 20)

In summary, the parameters of ConTrans model are listed in Table 2.
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3.5. Training process

The procedure of model training is shown in the Fig. 9,which is interpreted as follows:

Firstly, the hysteresis loop is binarized. Before starting the training, the model is initialized. Then, the hysteresis image is fed into
the ConTrans model, followed by forward propagation to compute the loss value. After evaluating the loss value, backward propa-
gation is performed while the gradient is zeroed and the learning rate and weights decay. The model gradient decreases and converges
gradually until the loss value is stable. Finally, the predicted fatigue life is obtained.

4. Case study and discussion
4.1. Experimental data

In the current section, the performance of ConTrans is evaluated by predicting the LCF life of four materials, including (1) case A:
heat-resistant steel of MarBN steel [46] for double phases structure including body-centered cubic (BCC) and face-centered cubic
(FCQ), (2) case B: nickel-base superalloys of MAR M247 for FCC, (3) case C: Additive manufacturing 304 steel (AM 304) [47] for FCC
and case D: 2024 aluminum alloy (2024AA) collected from this literature [48]. The corresponding temperatures and strain amplitudes
for the four materials are shown in Table 3-6. The experimental data contains 15 samples of MarBN in Table 3, 31 samples of M247 in
Table 4, 24 samples of AM 304 in Table 5, and 20 samples of 2024AA in Table 6.

4.2. Experimental procedure

Strain-controlled LCF tests were carried out at different temperatures. Cylindrical specimens were fabricated from all materials,
with gauge sections of 5 mm and 6 mm in diameter and a dimension tolerance of 0.02 mm. The detailed geometry of the specimen is
shown in Fig. 10. At least two specimens were used for testing at different temperatures at each strain level and to keep the temperature
constant, the specimens were incubated for 20 min before testing. Tests were performed using symmetrical triangular waveforms at
strain ratio R = — 1 and strain amplitude control mode. A clamp-on extensometer with an axial 12 mm measuring length was used to
monitor strain during fatigue tests. Besides, the stress and strain are obtained by the force sensor and extensometer during the cyclic
loading, and the hysteretic loop at each cycle is recorded with 400 data points. The schematic of the hysteretic loop is presented in
Fig. 11.

4.3. Performance

The performance of the ConTrans model is compared with that of the CNN and Transformer models evaluated by four cases: A.
MarBN, B. M247, C. AM304, and D. 2024AA, with the hyperparameters for each model detailed in Table 7. Values of hyperparameters
in four cases.. It should be noted that the CNN and Transformer models are configured with the same hyperparameters as the ConTrans
model. The prediction results for all three models are illustrated in Fig. 12. Upon analyzing the errors in the predictions, it is observed
that the ConTrans model yields higher accuracy compared to the CNN and Transformer models, with all predictions falling within a
scatter band of twice the standard deviation.

The performance of the ConTrans model is further evaluated by calculating the L1 loss and L2 loss between the predicted results and
the experimental data, as shown in Table 7. Whereas, the performance of three different models (CNN, Transformer, and ConTrans)
with two different loss functions is shown, with the ends of the box representing 25 % and 75 % of the results. The whiskers are the
minimum and maximum values, respectively. For a well-performing model, the box-and-line plot should have a lower mean and a
narrower sign range. From Fig. 13, it is obvious that the ConTrans model performs best, as it has the narrowest range and the lowest
average loss value.

4.4. Discussion

The performance of the ConTrans model was evaluated using experimental data from four materials subjected to thermal-
—mechanical loading: MarBN, MAR M247, AM 304, and 2024AA. The results demonstrated that the CNN model is capable of extracting
features from the hysteresis images, while the Transformer model can capture the temporal dependencies of the hysteresis loops.
However, the ConTrans model has superior accuracy and lower loss compared to the CNN and Transformer models, with most pre-
dictions falling within a scatter band of twice the standard deviation. Furthermore, the ConTrans model integrates the strengths of both
the CNN and Transformer models, outperforming them in LCF life prediction for all four materials. It indicates that the ConTrans model
is not sensitive to the structure of the material (BCC and FCC).

Table 2

Parameters of ConTrans model.
Processing for input data Processing for output data Model initialization Optimizer Loss Function Activation Function
Binary method logarithmic Xaiver RAdam Ly,Ls Loss LeakyReLUGELU
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Fig. 9. The procedure of model training.

Table 3
The experimental data of MarBN steel under different temperature.
Temperature Strain amplitude (%) Fatigue life (Ny)
25°C 0.4 7730
0.5 2585
0.8 724
1.0 442
1.5 152
430 °C 0.4 1140
0.5 522
0.8 294
1.0 318
1.5 132
630 °C 0.4 1865
0.5 1668
0.8 771
1.0 315
1.5 117

As for various traditional fatigue life prediction methods, the Coffin-Manson model [1] has been prevalent in the past several years.
The Basquin formula [49], which was combined with the Coffin-Manson model, was proposed to form a relation between total strain
and fatigue life, as Eq. (21) presents.

Ae  Aee  Ag o b,
5 =gty = g (2Ny) (2N C33)

The elastic strain Ae, and plastic strain e can be logarithmically shifted respectively. The o} and ¢; respectively denotes the fatigue
strength coefficient and fatigue ductility coefficient, and the b and c describes the fatigue strength exponent and fatigue ductility
exponent. Indeed, these parameters can be obtained by curve fitting, which somehow is complex to handle the data. What’s more,
some studies [50-53] demonstrated that the Basquin-Manson-Coffin model has a bad accuracy under extremely low-cycle fatigue
regions due to an alternative failure mechanism under large strain reversals. Later, a novel fatigue life prediction model was proposed
by Kuroda [54] to consider the coupled effect of different damage mechanisms, and the corresponding formulas are as follows:
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Table 4
The experimental data of MAR-M 247 superalloy steel under different temperature.
Temperature Strain amplitude Fatiguelife Temperature Strainamplitude Fatiguelife
(%) (Ny) (%) (Np)
500 °C 0.199 77,758 800 °C 0.198 31,675
0.296 9142 0.297 1198
0.474 900 0.298 1587
0.542 497 0.299 544
0.614 74 0.399 93
0.677 53 0.499 362
0.870 5 0.668 4
0.879 10
700 °C 0.295 2580 900 °C 0.199 49,793
0.297 1420 0.296 1518
0.298 1295 0.297 1427
0.299 4026 0.298 2455
0.682 2 0.299 1324
0.877 10 0.499 219
0.977 37 0.681 33
0.768 7
0.777 23
Table 5

The experimental data of AM 304 under different temperature.

Temperature Strain amplitude (%) Fatigue life 1 (Ny) Fatigue life 2 (Ny)
25°C 0.4 7970 8775
0.5 2370 4990
0.6 1915 2410
0.8 259 237
300 °C 0.4 6700 7540
0.5 1656 4605
0.6 1635 1175
0.8 570 138
650 °C 0.4 710 580
0.5 515 315
0.6 244 202
0.8 54 82
Table 6
The experimental data of 2024AA under different temperature.
Temperature Strain amplitude (%) Fatigue life (Ny)
20°C 0.35 58,965
0.5 9576
0.8 202
1.0 69
2.0 7
100 °C 0.5 10,744
0.8 353
1.0 102
1.5 15
2.0 6
200 °C 0.5 6044
0.8 302
1.0 73
1.5 27
2.0 17
300 °C 0.5 382
0.8 159
1.0 116
1.5 71
2.0 47
D, = 22)
&f

12



Y. Yang et al. Engineering Fracture Mechanics 306 (2024) 110239

60
1 15.52 14

? | <o‘ | %
Q | \ﬁ

_M12

»

o

Fig. 10. The size of the fatigue sample (units: mm).
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Fig. 11. The schematic diagram of the hysteretic loop.
Table 7
Values of hyperparameters in four cases.
Case d. Sk Sp Sg num, h num, di ds numg
A 64 3 2 1 3 8 2 64 64 2
B 128 3 2 2 3 8 2 128 64 2
C 128 3 2 2 3 8 3 128 128 2
D 128 3 2 1 3 8 3 64 64 2
N Mg\
Df=—=4N(— (23)
Nf 28f
Ae,N¥
Ll
D, = 24
e c (24)
£, Ag, ¢ Ae Na'
PR AN (S22 R | (25)
&f 28f c

In this model, the damage of metal is divided into three parts, including a monotonic tensile damage part D, a ductility exhaustion
damage part Dy and a microcrack propagation damage part D, under small strain reversals. In Eq. (25), the fatigue life is obtained by
the three part, where &, represents the maximum tensile plastic strain; &; denotes monotonic fracture strain; a’, o and C describe
material parameters. Obviously, the obtainment of these parameters is more difficult than that of Basquin-Manson-Coffin relation.

Inspired by the energy-based fatigue life prediction approach, the proposed ConTrans model offers a novel approach to predict LCF
life from half-life hysteresis loop images, which can be easily obtained from the stress—strain data, eliminating the need for additional
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Fig. 12. The comparison of experimental and predicted life of CNN model, Transformer model and ConTrans model.

inputs such as loading conditions and material damage factors. Traditional models are constrained by the researcher’s comprehension
of the studied phenomenon and the precision of the obtained material parameters. In contrast, the proposed ConTrans model offers a
novel approach to predict LCF life from half-life hysteresis loop images, which can be easily obtained from the stress—strain data,
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Fig. 13. Model performance of CNN, Transformer and ConTrans model.

eliminating the need for additional inputs such as loading conditions and material damage factors. What’s more, the ConTrans model
can be applied to a variety of loading conditions and materials, theoretically, provided that the hysteresis images of the loading process
are available. However, it’s admitted that the ConTrans model requires training with a dataset specific to a certain material to obtain
model parameters that are only valid for that material.

The ConTrans model shows promise as a tool for LCF life prediction, providing rapid and accurate results without the need for
additional information about the loading conditions and damage factors of the material, which could prove beneficial for material
design, optimization, and testing, as well as for failure analysis and prevention.

5. Conclusion

In this study, a novel neural network model, named ConTrans, is established for LCF life prediction from binarized hysteresis
images. ConTrans model consists of three components: (1) a CNN as the Backbone, (2) a Transformer as the Neck, and (3) a FCNN as the
Head. The model leverages the local information processing ability of CNN and the global information fusion ability of Transformer to
extract and learn mechanical information such as stress—strain relationships and energy information from hysteresis images. The model
is validated by four materials (MarBN steel, MAR-M247, AM 304, and 2024AA) under thermal-mechanical loading. The results
demonstrate that the ConTrans model has excellent LCF life prediction capability, and can be adjusted according to the specific case
under study to achieve higher accuracy. Moreover, the quantity and quality of the fatigue data used are also important factors that
affect the model performance.

6. Outlook

The proposed ConTrans model is a novel and effective method for predicting the LCF life from the half-life hysteresis loop image,
without requiring any additional inputs such as loading conditions and damage factors. The model has been validated on different
structures of materials with thermal-mechanical loading and has shown high accuracy and robustness. It is an attempt to introduce the
advanced Transformer model into the field of fatigue life prediction for the first time, and at the same time combines the knowledge in
the fields of CV and NLP. However, there are still serval challenges and limitations that need to be addressed in the future work. For
example, the model performance may depend on the quality and quantity of the training data, and the generalization ability of the
model to other materials and loading scenarios needs to be further tested. Moreover, the interpretability of the model is not well
understood, and the mechanism behind the image-to-life mapping is still unclear. Therefore, future work will focus on improving the
data collection and augmentation, exploring the transfer learning and domain adaptation techniques, and developing the visualization
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and analysis tools for the model. These efforts will enhance the applicability and reliability of the ConTrans model for the LCF life
prediction of engineering materials.

Another promising direction for the future work is to incorporate physical knowledge into the deep learning models, which can
improve the physical consistency and robustness of the predictions. A recent algorithm known as Physics-informed Neural Network
(PINN) [55] is a class of algorithms that seamlessly integrates data and abstract mathematical operators. Making learning algorithms
physically informed amounts to introducing appropriate observational, learning, or inductive biases that can guide the learning
process to identify physically consistent solutions. The mentioned patterns of learning algorithms biasing towards physically consistent
solutions are not mutually exclusive, but can effectively be combined to produce a very wide range of hybrid approaches for building
physically-informed learning models. Currently, PINN is effectively used in many fields, details of which can be referenced in the
reviews [56-59]. In the future, the idea of physics informed can also be borrowed to the field of LCF life prediction under thermal-
—-mechanical loading. This would enable the ConTrans model to leverage the prior knowledge of the material behavior and the fatigue
mechanism and to reduce the dependence on the data availability and quality.
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