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This paper aims to investigate the in-depth relationship between plastic hardening models based on J2
plasticity theory with temperature and strain rate using machine learning methods. A data set related to
temperature and strain rate is constructed by randomly generating equivalent plastic strain increments. To
replace the conventional process of solving equivalent plastic strain increments using Newton�s iterative
method under isotropic hardening and associated flow rules, artificial neural network (ANN) and support
vector regression (SVR) models are developed to predict equivalent plastic strain increments effi-
ciently. The hyperparameters of these models are systematically optimized to identify the most suit-
able configurations. After determining the optimal hyperparameters, the model is trained. The plastic
hardening models based on ANN and SVR are then implemented within the Abaqus User MATerial
(UMAT) subroutine, and their performance is validated. For this purpose, a single element and tensile test
simulation were applied to evaluate the accuracy of ANN and SVR. The results indicate that the ANN
model�s performance initially improves with increasing temperature but subsequently deteriorates. In
contrast, the strain rate appears to have minimal impact on the ANN model�s performance. On the other
hand, the SVR model�s performance remains unaffected by variations in both temperature and strain rate.
Furthermore, the SVR model demonstrates higher accuracy, requires fewer hyperparameters and is more
suitable for this application. Nonetheless, the ANN model�s results remain within acceptable limits.

Keywords artificial neural network, finite element analysis,
machine learning, plasticity model, support vector
regression

1. Introduction

Plastic hardening theory is a fundamental framework in
material mechanics, used to describe the processes of plastic
deformation in metals and other materials (Ref 1, 2). This
theory is essential for predicting the mechanical behavior of
materials under various conditions, such as changes in temper-
ature and strain rate, which are common in real-world
applications. Recent advancements in computational modeling

and experimental techniques have enhanced our understanding
of plastic hardening, leading to the development of more
accurate constitutive models capable of predicting material
behavior across a wide range of conditions (Ref 3). For
example, the integration of thermomechanical coupling into
constitutive models has significantly improved predictions of
plastic hardening in materials exposed to high temperatures and
dynamic loading conditions. This approach accounts for the
interplay between thermal and mechanical factors, offering a
more comprehensive understanding of material behavior (Ref
4-6). Additionally, the influence of strain rate on plastic
hardening has been extensively studied. High strain rate
deformation often results in different hardening responses
compared to low strain rates, due to factors like adiabatic
heating and the limited time available for dislocation motion
(Ref 7, 8). These models provide more precise predictions of
material performance, thereby contributing to the optimization
of material design and manufacturing processes.

Machine learning aims to enable computer systems to perform
specific taskswithout explicit programmingby learningpatterns and
rules from data (Ref 9, 10). This technology has become integral to
contemporary science and technology, finding applications across
various fields (Ref 11). In recent years, the continuous advance-
ments in machine learning have introduced new approaches to the
study of metal plastic hardening. Dong Phill Jang et al. (Ref 12)
proposed a constitutive model based on artificial neural network
(ANN) to predict the elastoplastic behavior of J2 plasticity.
Hongchun Shang et al. (Ref 13) used an artificial neural network
(ANN) model to characterize the dynamic hardening behavior of
5182-O aluminum alloy plate under the coupling effect of strain rate
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and temperature. Nikolaos N. Vlassis et al. (Ref 14) constructed a
new deep learning framework, which is dedicated to the training of
interpretative elastoplastic models, achieving thermodynamic con-
sistency and excellent learning ability. Annan Zhang et al. (Ref 15)
successfully expressed the stress–strain response of levy vonMises
material with isotropic hardening through the neural networkmodel
and effectively simulated in the element and structure simulation.
Burcu Tasdemir et al. (Ref 16) captured the complex behavior of
materials under random non-monotonic uniaxial loading through
the neural networkmodel trained bymachine learning and achieved
accurate prediction, which was successfully applied to the elastic–
plastic response of commercial pure titanium. Xin Li et al. (Ref 17)
proposed a strengthened constitutive model based on machine
learningmethod, combiningdata-driven concept andbasicplasticity
theory. In the study of mechanical response of Ti-6Al-4 V titanium
alloy, the accuratepredictionhighly correlatedwith the experimental
results is achieved, which reveals the potential of this method in
computational mechanics.

However, to the best of our knowledge, no research has
thoroughly explored the relationship between plastic hardening
models based on J2 plasticity theory with respect to temperature
and strain rate using machine learning methods. In response to
this gap, this paper begins by detailing the process of gathering
experimental data. It then introduces the J2 plasticity hardening
theory, covering key elements such as the yield function,
associative plastic flow rule and its incremental formulation.
Following this, the paper provides an overview of machine
learning, including the acquisition of datasets and the funda-
mental principles of two machine learning models: artificial
neural networks (ANN) and support vector regression (SVR).
The finite element analysis results of the machine learning-based
plastic hardening model are then examined, with a focus on the
effects of temperature, strain rate and strain on both ANN and
SVR models. Their respective strengths and weaknesses are
analyzed, culminating in a summary that looks forward to future
developments and potential next steps in this area of research.

The main innovations of this study are as follows:

1) This study is based on the J2 plasticity hardening theory
and uses machine learning models to predict the incre-
mental equivalent plastic strain. Predicting using the
incremental method is more suitable for three-dimen-
sional finite element simulations.

2) This study applies both ANN and SVR machine learning
models and discusses the advantages and disadvantages
of each. Additionally, it investigates the impact of strain,
temperature and strain rate on both models.

3) This study proposes a novel method for generating data-
sets. By processing the raw experimental data, meet the
training needs of machine learning models based on J2
plastic hardening theory.

2. Constitutive Model and Finite Element Imple-
mentation

2.1 Plastic Constitutive Theory

2.1.1 Yield Criterion. The yield criterion is used to judge
whether the material is in the yield state. The von Mises yield

function is defined as follows:

f ¼ re � ry ðEq 1Þ

where re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2 r1 � r2ð Þ2þ r1 � r3ð Þ2þ r2 � r3ð Þ2
h i

r

is von

Mises equivalent stress (Ref 18) and ry is the yield stress. So,

the yield criterion is:

f < 0 : Elastic deformation

f ¼ 0 : Plastic deformation

(

ðEq 2Þ

In theory, there is no state where f > 0. If f > 0, the yield
function needs to be modified to ensure that f = 0.

Geometrically, in the three-dimensional principal stress
space, the yield criterion is expressed as a cylinder, which is
called the yield surface. If the current stress state is inside the
yield surface, corresponding to f < 0, no yield occurs; if the
current stress state is on the yield surface, corresponding to
f = 0, the material is just at the point of yielding. If the current
stress state is outside the yield surface, corresponding to f > 0,
it is proved that the current stress state will produce plastic
strain. It is necessary to modify the yield surface so that the
stress state is just on the yield surface (Ref 19).

2.1.2 Hardening Theory. Hardening theory is the char-
acterization of the subsequent yield surface of a material after
yielding. It can be divided into three categories: isotropic
hardening theory, follow-up hardening theory and mixed
hardening theory (Ref 20). In the process of uniaxial tension,
the hardening of the material is linear isotropic hardening.

The isotropic hardening theory considers that the loaded
yield surface expands uniformly and isotropically, and the yield
stress is related to the equivalent plastic strain, and the
equivalent stress is only related to the stress state:

f ðr; pÞ ¼ reðrÞ � ryðpÞ ðEq 3Þ

Under different temperatures and strain rates, the constitu-
tive model and material property will change. So, the yield
stress is not only a function of the equivalent stress, but also a
function of the equivalent stress, temperature and strain rate:

f ðr; p; T ; SÞ ¼ reðrÞ � ryðp; T ; SÞ ðEq 4Þ

2.1.3 Associative Plastic Flow Rule. For associative
flow, the direction of the plastic strain rate tensor is considered
to be perpendicular to the tangent direction at the load point on
the yield surface (Ref 21) which could be expressed by yield
function:

dep ¼ dq
@f

@r
ðEq 5Þ

where dep is the plastic strain increment and r is the stress
tensor. This shows that the direction of the plastic strain

increment is determined by @f
@r, and the magnitude is determined

by the plastic multiplier dq.
The plastic flow direction of the first component is as

follows:
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@f

@r1
¼

1
2 r1 � r2ð Þ þ r1 � r3ð Þ½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2 r1 � r2ð Þ2þ r1 � r3ð Þ2þ r2 � r3ð Þ2
h i

r ¼ 3

2

r01
re

ðEq 6Þ

Other components have similar results, written in tensor
form as follows:

dep ¼ dq
3

2

r0

re
ðEq 7Þ

where r0 ¼ r� 1
3 r1 þ r2 þ r3ð Þ is the deviatoric stress tensor

and von Mises stress re can be calculated by r0:

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2
r0 : r0

r

ðEq 8Þ

Next, consider the equivalent plastic strain increment dp:

dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

9
dep1 � dep2
� �2þ dep1 � dep3

� �2þ dep2 � dep3
� �2

h i

r

ðEq 9Þ

Substitute Equation (5) into Equation (7), and find: dp = dq.
Equation (5) can be written as follows:

dep ¼ dp
3

2

r0

re
ðEq 10Þ

2.2 Finite Element Implementation

2.2.1 Incremental Constitutive Equation. If the current
load step is n, the strain increment at a certain point in the n + 1
increment step can be obtained through the equilibrium
equation in increment form. At this time, all known quantities
are as follows: strain tensor en, stress tensors rn, plastic strain
tensor ep n and equivalent plastic strain pn of step n and strain
increment den+1 of step n + 1.

According to the generalized Hooke�s law:

rnþ1 ¼ 2Geenþ1 þ ktr eenþ1

� �

1 ðEq 11Þ

where G ¼ E
2ð1þmÞ, k ¼ mE

1þmð Þ 1�2mð Þ and E is Young�s model, and m

is Poisson�s ratio. Elastic strain can be decomposed into:

eenþ1 ¼ een þ deenþ1 ¼ een þ denþ1 � depnþ1 ðEq 12Þ

So:

rnþ1 ¼ 2G een þ denþ1 � depnþ1

� �

þ ktr een þ denþ1 � depnþ1

� �

1

ðEq 13Þ

Because of the principle of plastic incompressibility,
tr depnþ1

� �

¼ 0:

rnþ1 ¼ 2G een þ denþ1

� �

þ ktr een þ denþ1

� �

1� 2Gdepnþ1

ðEq 14Þ

2G een þ denþ1

� �

þ ktr een þ denþ1

� �

1 is the trial stress, and
write it as rtr n + 1 :

rnþ1 ¼ rtrnþ1 � 2Gdepnþ1 ¼ rtrnþ1 � 2Gdpnþ1
3

2

r0nþ1

re;nþ1
ðEq 15Þ

Trace both sides of the equation at the same time:

tr rnþ1ð Þ ¼ tr rtrnþ1

� �

ðEq 16Þ

r0nþ1 þ
1

3
tr rnþ1ð Þ1 ¼ rtrnþ1 � 3Gdpnþ1

r0nþ1

re;nþ1
ðEq 17Þ

1þ 3G
dpnþ1

re;nþ1

� �

r0nþ1 ¼ rtrnþ1 �
1

3
tr rtrnþ1

� �

1 ¼ rtr
0

nþ1 ðEq 18Þ

1þ 3G
dpnþ1

re;nþ1

� �2

r0nþ1 : r
0
nþ1 ¼ rtr

0

nþ1 : r
tr0

nþ1 ðEq 19Þ

re;nþ1 þ 3Gdpnþ1 ¼ rtre;nþ1 ðEq 20Þ

Eventually, our yield condition is:

f ¼ re;nþ1 � ry;nþ1

¼ rtre;nþ1 � 3Gdpnþ1 � ry;nþ1 pn þ dpnþ1; T ; Sð Þ ¼ 0

ðEq 21Þ

This is a nonlinear equation for dpn+1, which can be solved
by Newton iteration method. The plastic strain increment dep
n + 1 can be obtained after this:

depnþ1 ¼ dpnþ1
3

2

r0nþ1

re;nþ1
¼ dpnþ1

3

2

rtr
0

nþ1

rtre;nþ1

ðEq 22Þ

3. Implementation Process

Read the strain increment of the current incremental step de
n + 1 through the incremental form of the balance equation.

Calculate the trial stress and substitute it into the yield
function to determine whether yielding has occurred:

rtrnþ1 ¼ rn þ 2Gdenþ1 þ ktr denþ1ð Þ1 ðEq 23Þ

f ¼ rtre;nþ1 � ry;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2
rtr

0
nþ1 : r

tr0
nþ1

� �

r

� ry;n ðEq 24Þ

If f £ 0, update the stress according to elastic conditions
and dpn+1 = 0, else calculate the equivalent plastic strain
increment dpn+1 and plastic strain increment dep n + 1 through
Equation (21) and Equation (22).

Then, calculate elastic strain increment dee n + 1 and stress
increment drn+1:

deenþ1 ¼ denþ1 � depnþ1 ðEq 25Þ

drnþ1 ¼ 2Gdeenþ1 þ ktr deenþ1

� �

1 ðEq 26Þ

Update stress rn+1 and equivalent plastic strain pn+1:

rnþ1 ¼ rn þ drnþ1 ðEq 27Þ

pnþ1 ¼ pn þ dpnþ1 ðEq 28Þ
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4. Source and Selection of Datasets

4.1 Acquisition of Datasets

According to Equation (21), to solve the nonlinear equation
about dpn+1 when rtr e,n + 1, pn , T, S and G are known is the
task. At the same time, the shear modulus G can be expressed
as a function of T and S. In this way, the feature dimension of
the input data is reduced by one dimension, which can not only
simplify the model, but also enhance the generalization ability
of the model.

Set the value of pi from 0 to 0.1, the value of temperature
from 50 to 650�C and the value of strain rate from 10-5 to 10-1.
The elastic model E takes the yield stress divided by 0.002, and
Poisson�s ratio is 0.33. The training set, validation set and test
set are selected as shown in Table 1.

Under a specific temperature and strain rate, the input and
output vectors of the condition are generated as follows:

Generate dp1 from 0 to 0.0002 randomly, and normalize it:

O1 ¼ dp1½ � ðEq 29Þ

where O1 is the first output vector. According to Equation (21),
first input vector I1:

I1 ¼ 0; ry dp1; T ; Sð Þ þ 3Gdp1; T ; S
� �

ðEq 30Þ

where ry is a hardening function that is related to temperature
and strain rate. Similarly:

If pi-1 + dpi ‡ 0.1, end and normalize input vector and
output vector. Normalization allows the preprocessed data to be
limited to a certain range, thus eliminating the undesirable
effects caused by singular sample data. Normalization allows
the preprocessed data to be limited to a certain range, thus
eliminating the undesirable effects caused by singular sample
data. Normalization speeds up the speed of gradient descent to

find the optimal solution and also speeds up the convergence of
the training network (Ref 22, 23). In this study, Min-Mix
normalization is used. For variable x, the normalization formula
is:

x0i ¼
xi �max xið Þ

max xið Þ �min xið Þ ðEq 32Þ

For the strain rate, since there is a large order of magnitude
difference between the different strain rates, we first take a
negative logarithm with a base of 10 and normalize it afterward.
Figure 1 shows the flowchart of the process.

4.2 Selection of Yield Function

Due to the current lack of sufficiently many (30 or more)
experimental data for the same material at different tempera-
tures and strain rates, a preexisting hardening function had to be
chosen to generate the data.

Johnson–Cook model was able to better describe the
complex stress–strain behavior of metallic materials at high
strain rates and high temperatures and only requires a small

amount of experimental data for parameter fitting. Therefore, it
is widely used in simulation and analysis in the fields of impact
dynamics, metal forming and material processing, providing
valuable reference and support for engineering design (Ref 24).
Despite the utility and accuracy of the Johnson–Cook model
under certain conditions, its limitations need to be taken into
account when applying it, and appropriately revised and
validated in the context of specific situations (Ref 25). In our
study, a modified Johnson–Cook model is chosen as the
hardening function as proposed by Nitin Kotkunde et al. (Ref
26). The expression is as follows:

Table 1 Selections of training set, validation set and test set

Temperature, �C

Strain rate, s-1

10-1 10-2 10-3 10-4 10-5

50 Training set Training set Training set Test set Training set
150 Training set Test set Validation set Training set Training set
250 Test set Training set Training set Training set Validation set
350 Training set Training set Training set Validation set Training set
450 Validation set Training set Training set Training set Training set
550 Training set Validation set Training set Training set Test set
650 Training set Training set Test set Training set Training set

O2 ¼ dp2½ �

I2 ¼ p0 þ dp1; ry dp1 þ dp2; T ; Sð Þ þ 3Gdp2; T ; S
� �

¼ p1; ry dp1 þ dp2; T ; Sð Þ þ 3Gdp2; T ; S
� �

(

..

.

Oi ¼ dpi½ �

Ii ¼ pi�2 þ dpi�1; ry pi�1 þ dpi; T ; Sð Þ þ 3Gdpi; T ; S
� �

¼ pi�1; ry pi�1 þ dpi; T ; Sð Þ þ 3Gdpi; T ; S
� �

(

ðEq 31Þ
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r ¼ A1 þ B1eþ B2e
2

� �

1þ C1 ln _e
�ð Þ exp k1 þ k2 ln _e

�ð Þ T � Trð Þ½ �
ðEq 33Þ

where A1, B1, B2, C1, k1 and k2 are the material constants whose
value is shown in

Table 2. And r is von Mises stress, e is the equivalent plastic
strain, _e� is the ratio of the strain rate to the reference strain rate,
T is the temperature, and Tr is the reference temperature. The
value of reference strain rate is 10-5, and the value of reference
temperature is 50�C.

5. Machine Learning

Although dpn+1 can be solved by Newton iteration method,
this method has great limitations. First of all, to solve dpn+1 by
Equation (Ref 23), it is necessary to know the specific
functional analytical formula of yield stress ry. Secondly, if
the initial value is not properly selected, the result may not
converge. So, machine learning is used to try to solve dpn+1.

5.1 Artificial Neural Network

Artificial neural network (ANN) is inspired by biological
neural network and used to calculate nonlinear problems (Ref
27). ANN consists of an input layer, an output layer and one or
more hidden layers. Each hidden layer accepts the data of the
previous layer, applies weights and biases to calculate after
nonlinear transformation through the activation function and
transmits the calculation results to the next hidden layer until
reaching the output layer (Ref 28-30). Figure 2 shows an ANN
structure with three hidden layers using ReLU function as the
activation function.

If there is no activation function or a linear activation
function is introduced, no matter how complex the constructed
neural network is, the final output is a linear combination of
inputs. The existence of activation functions enables neural
networks to approximate nonlinear functions, which can enable
neural networks to be applied to more nonlinear models (Ref
31). The Sigmoid and Tanh were early proposed activation
functions. After that, ReLU and ReLU-like activation functions
were proposed and showed better results (Ref 32). In this study,
one of the ReLU-like activation functions, leaky ReLU, is used
as the activation function. The expressions of the above four
activation functions are as follows:

Fig. 1 Flowchart for generating a dataset Fig. 2 Structure of artificial neural network

Table 2 Material constants for modified Johnson–Cook model

Parameter A1, MPa B1, MPa B2, MPa C1 k1 k2

Value 952.4 2977.4 �12218.3 0.0027 �0.0012 3.75 9 10-6
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g xð Þ ¼ 1

1þ e�x
; Sigmoid

g xð Þ ¼ ex � e�x

ex þ e�x
; Tanh

g xð Þ ¼
x; x � 0

0; x < 0

(

; ReLU

g xð Þ ¼
x; x � 0

ax; x< 0

(

; Leaky ReLU

ðEq 34Þ

where a is a number greater than zero, and usually, the value
of a is about 0.01. Figure 3 shows the images of the above four
activation functions and their derivative images. Through the
image, it is not difficult to find that compared to Sigmoid and
Tanh, Leaky ReLU does not suffer from serious gradient
disappearance. There will be no dead neurons like ReLU.

The mean square error loss function (MSE) is expressed as:

loss ¼ 1

n

X

n

i¼1

ŷi � yið Þ2 ðEq 35Þ

where ŷi is the forecast value, yi is the factual true value, and
loss is the loss function. The process of ANN training is to
continuously optimize the weights and biases through the
gradient descent algorithm to make the loss function as small as
possible. In the store library of Python, many gradient descent
algorithms have been packaged to train the ANN model
conveniently and quickly, such as SGD, momentum and Adam.
Among them, Adam is a very popular algorithm in the field of

deep learning. The empirical results show that the Adam
algorithm performs well in practice and has a great advantage
over other algorithms (Ref 33). So, the Adam optimizer will be
chosen for the training of the ANN model.

Select the batch size to be 256, three hidden layers and 20
neurons in each layer. In this state, determine the value of
learning rate. The value of loss function of the training set and
validation set when the learning rate is 5 9 10-2, 5 9 10-3 and
5 9 10-4, respectively, is shown in Fig. 4. When the learning
rate is 5 9 10-2, the loss function cannot converge to a smaller
value, and oscillation occurs. This means that a smaller learning

Fig. 3 (a) Sigmoid activation function, (b) Tanh activation function, (c) ReLU activation function and (d) Leaky ReLU activation function

Fig. 4 The value of loss function at different learning rates.
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rate is needed. When the learning rate is 5 9 10-3, the loss
function can converge to a smaller value. When the learning
rate is 5 9 10-4, the convergence speed of the loss function is
slow, and the loss of the validation set is significantly greater
than the loss of the training set, resulting in overfitting. To sum
up the above, the learning rate is determined to be 5 9 10-3.

Simultaneously, we explored the impact of neural network
structure on ANN performance. We adjusted the number of
hidden layers and the number of neurons in each layer. The
learning rate was set to 5 9 10-3. The train loss and valid loss
are shown in Fig. 5. It is evident that with this learning rate, the
best training results are achieved with 3 hidden layers, each
containing 20 neurons.

The finally determined hyperparameters are shown in
Table 3.

5.2 Support Vector Regression (SVR)

Support vector regression is developed on the basis of
support vector machines, which have strong nonlinear fitting
and generalization capabilities (Ref 34, 35). SVR needs to find
a hyperplane f xð Þ ¼ WTxþ b so that all points are between the
tube formed by the hyperplanes f xð Þ � e and f xð Þ þ eand , at
the same time, ensure that the tube is as wide as possible (Ref
36-38), that is:

min
1

2
Wk k2

s:t: yi � WTxi þ b
� �

	

	

	

	 � e; 8i

8

>

<

>

:

ðEq 36Þ

On the one hand, maximizing the interval can ensure that as
many data points as possible are inside the interval band, on the
other hand, it can prevent the model from over fitting.

It is not difficult to find that the determination of tube is
independent of the internal points, but only related to the points
on the boundary, which determine the upper and lower
hyperplanes, so these points are called support vectors.

In real tasks, it is often difficult to directly determine the
appropriate e to ensure that most of the data can be in the
interval band. However, SVR wants all the training data to be in
the interval band, so it adds the upper and lower bound
relaxation variable n^ and n_, which allows some samples to be
not in the interval band. If a sample is in the interval band, then
n^ ¼ n_ ¼ 0; if a sample is above the interval band, then
n^ 6¼ 0; n_ ¼ 0; and if a sample is below the interval band, then
n^ ¼ 0; n_ 6¼ 0 (Ref 37-41). Figure 6 shows the visualization
model of SVR.

So now the optimization problem becomes:

min
1

2
Wk k2þC

X

n

i¼1

n^i þ n_i
� �

s:t:� e� n_i � yi � WTxi þ b
� �

� eþ n^i ; 8i
n_i � 0; n^i � 0; 8i
n_i � n^i ¼ 0; 8i

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ðEq 37Þ

where C is the penalty factor and e is the tube size, which are
two important hyperparameters. C indicates the importance of
the loss caused by outliers (Ref 42), and e reflects the tolerance
of deviation. And n is the number of samples.

If the regression effect of our data in the existing dimension
is not good, so kernel functions are introduced to map the data
to the high-dimensional space. Gaussian kernel function is a
commonly used and effective kernel function. The specific
method of using kernel function and the determination of SVR
optimal solution are relatively complex, so you can refer to
previous related articles (Ref 43, 44). Finally, the regression
equation is:

f xð Þ ¼
X

m

i¼1

aij xi � xð Þ þ b

j xi � xð Þ ¼ exp �c xi � xk k2

 �

ðEq 38Þ

where m is the number of support vectors and xi is the support
vector. And c is also a hyperparameter.

First fix the hyperparameter C to 4, which expresses the
degree of penalization of the outliers. The effect from C can be
balanced by adjusting e. The validation set loss and training set
loss under different c and e are shown in Fig. 7.

It can be found that when e is large, the model is underfitted;
as e gets progressively smaller, the model is fitted better and
better. Surprisingly, even when e is very small, the model is not
overfitted for most of c. For c, as it gets progressively larger, the
fit of the model first gets better at c = 0.7 where it works best

Fig. 5 The value of loss function at different network structures. L
is the number of hidden layers, and N is the number of neurons per
layers.

Table 3 Hyperparameters of ANN model

Algorithm Learning rate Activation function Epochs Number of hidden layers Number of neurons per layer

Selection Adam 5 9 10-3 Leaky ReLU 100 3 20
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and then gets worse, and even when c = 0.9, the model has a
tendency to overfit.

The optimal values of C, e and c of SVR model are shown in
Table 4.

Figure 8 illustrates the overall technical workflow of the
study, outlined as follows: Initially, experimental data are
collected under various temperatures and strain rates, followed
by the fitting of the hardening function. We have previously
conducted experiments and published articles on the subject
(Ref 45-48). However, the limited number of experiments does
not satisfy the quantitative requirements of machine learning.
Therefore, in this study the hardening function is considered to
be the J-C constitutive model. But, in real applications, it is still
necessary to obtain raw data through experiments for a new
material. After establishing the input and output variables for
the machine learning model, datasets are generated using the
methodology mentioned above. Subsequently, optimal hyper-
parameters for ANN and SVR models are determined. The
ANN and SVR models are then trained. Finally, finite element
comparison and validation are conducted, and the results are
analyzed to draw conclusions.

6. Results and Conclusion

To evaluate the accuracy of the ANN and SVR constitutive
models, the trained parameters from both models were
implemented into the UMAT subroutine of ABAQUS for finite
element analysis. A 3D cell was selected for uniaxial extrusion
in ABAQUS, with boundary conditions set to ensure that the
strain did not exceed 0.1. The analysis was conducted over 500
steps, with each strain increment set to 0.002. For further details
on specific parameter settings, please refer to the previous
document (Ref 49).

Under different conditions, the stress–strain curves predicted
by ANN and SVR and the real stress–strain curves, as well as
the absolute percentage errors between them, are shown in
Fig. 9. And the R2 of ANN and SVR is shown in Table 5.

Through a systematic analysis of experimental results and
finite element validation results of the machine learning

Fig. 6 The visualization model of SVR.

Fig. 7 The validation set loss and training set loss under different c
and e.

Table 4 Hyperparameters of SVR model

C e c

Selection 4 10-4 0.7
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constitutive model under various temperatures and strain rates,
several conclusions can be drawn as follows:

(1) Overall, SVR significantly outperforms ANN on each
set of test sets. This indicates that both generalization
and fitting abilities of SVR model are better than ANN
model. But at the same time, the effect of ANN model
is good enough. Its maximum absolute percentage error
is only 1%, and minimum value of R2 also reaches
0.9951. Though SVR models are a litter better, ANN
model is acceptable too.

(2) For ANN, it is obvious to find that there is a relation-
ship between the effect of the model and the tempera-
ture, while there is no significant relationship with the
strain rate. As the temperature increases, the effect of

the ANN model first becomes better and then worse.
When the temperature is 50�C, the absolute percent er-
ror of ANN stays near 0.5. When the temperature in-
creases to 150�Cand 250�C, the absolute percentage
error of ANN becomes smaller. At 150�C, it is main-
tained near 0.3, and at 250�C, it is maintained below
0.3. When the temperature is further increased to
550�Cand 650�C, the maximum absolute percentage er-
ror is greater than 0.8. Meanwhile, with the increase in
temperature, R2 also shows a trend of becoming larger
and then smaller, as shown in Table 5.

(3) In addition, according to Fig. 9, when the temperature is
low, the ANN does not work well in the small strain
state. However, when the temperature is high, the ANN
does not work well in the large strain state. This indi-

Fig. 8 The overall technical process route of the study.
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cates that the ANN model is not good enough for the
critical conditions. The effect of ANN is the worst when
it is in the large strain condition of the high-temperature
condition, and its absolute percentage error reaches the
maximum value, 1%. Moreover, as the strain rate in-
creases, there is no significant trend in either Fig. 9 or
R2.

(4) For SVR, no significant relationship is found between
its effect and temperature and strain rate. This is because
SVR works exceptionally well at any strain rate and
temperature and its R2 can be considered to be 1. What
can be found is that the model becomes more effective
and then less effective as the strain increases, as shown
in Fig. 9. This indicates that the model does not handle
the strain critical conditions well.

(5) ANN excels at capturing nonlinear relationships within
data. In the context of material behavior, temperature
variations exhibit nonlinear characteristics that ANN can
initially model effectively. However, as temperature ex-
ceeds a certain threshold, the material�s behavior may
become increasingly complex and unpredictable, leading
to a decline in the model�s performance. At elevated
temperatures, the ANN model may start to overfit speci-
fic patterns within the training data, neglecting broader
trends. This overfitting issue becomes more pronounced
when the temperature moves beyond a critical range,
impairing the model�s ability to generalize to new data
points and resulting in decreased performance. In this
study, the effect of strain rate on the ANN model is
found to be less significant compared to temperature, as
the model does not strongly capture variations in strain
rate. Consequently, strain rate has a minimal impact on

the ANN model�s predictions. On the other hand, SVR
demonstrates strong robustness and generalization capa-
bilities, particularly in handling high-dimensional data
without succumbing to overfitting. By selecting an
appropriate kernel function, SVR can effectively capture
nonlinear relationships. However, both ANN and SVR
models exhibit limitations in modeling the transition
from elasticity to plasticity, leading to poor performance
in predicting material behavior at small strain levels.
Additionally, in large strain states, both models suffer
from error accumulation during the incremental process,
contributing to their diminished accuracy.

(6) SVR requires fewer hyperparameters than ANN. SVR
has only 3 hyperparameters, but ANN has optimizer,
learning rate, number of hidden layers and many other
hyperparameters. SVR requires less time and effort to
optimize the hyperparameters of the model than ANN.
However, ANN is more versatile and flexible than SVR.
For example, the interpretability of the model can be en-
hanced by adding physical information constraints, or
pre-trained models can be introduced to cope with a
variety of different downstream tasks.

7. Outlook

The success of machine learning in developing a temper-
ature- and strain rate-dependent plastic hardening model is a
significant step in material mechanics. It uses AI to understand
the complex interactions of variables crucial for material

Fig. 9 Comparison of stress–strain curves for different conditions and absolute percentage errors between them. a Temperature is 50�C, and
strain rate is 10-4. b Temperature is 150�C, and strain rate is 10-2. c Temperature is 250�C, and strain rate is 10-1. d Temperature is 550�C, and
strain rate is 10-5. e Temperature is 650�C, and strain rate is 10-3

Table 5 R2 of ANN and SVR under different conditions

T: 50�CS: 10-4 T: 150�CS: 10-2 T: 250�CS: 10-1 T: 550�CS: 10-5 T: 650�CS: 10-3

ANN R2 0.9986 0.9987 0.9992 0.9956 0.9954
SVR R2 0.9999 1.0000 0.9999 0.9999 0.9998
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behavior. The application of machine learning in material
modeling opens new research and engineering paths. Its
success in capturing these relationships paves the way for
similar studies in other materials.

Machine learning provides a dynamic and flexible frame-
work that can adapt to new data and conditions, expanding
engineering design and optimization. Ongoing advancements
offer potential for model improvement. Future research may
include more material characteristics, algorithm refinement, and
new methodologies to enhance predictions.
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